
xtel: A Development Environment to Support
Rapid Prototyping of “Ubiquitous Content”

Satoru Tokuhisa*, Takaaki Ishizawa**, Yoshimasa Niwa***, Kenji Kasuya***,
Atsuro Ueki*, Sho Hashimoto**, Kazuhiko Koriyama** and Masa Inakage****

* Keio University Advanced Research Center
** Keio University Graduate School of Media and Governance

*** Keio Research Institute at SFC
**** Keio University Graduate School of Media Design

S110, delta, Endo 5322, Fujisawa, Kanagawa, Japan
+81-466-49-3545

{dangkang, txi, niw, kasuya, atsurou, shokai, koriyama, inakage }@sfc.keio.ac.jp

ABSTRACT
This paper describes the "xtel" development environment
for "Ubiquitous Content". Ubiquitous contents are real
space applications that are embedded in day-to-day life and
intended for use by consumers. This is content that is
experienced through interaction with people, objects and
environments that exist in real space. Xtel comprises three
tools: the "moxa" MCU board that connects to sensors and
actuators and is capable of short-distance wireless
communications; the "Talktic" programming/runtime
environment for the MCU board that contains a JavaScript
parser, compiler, VM and library; and the "Entity
Collaborator" P2P network library that is capable of
handling continuous information such as video and audio in
addition to the discrete information from sensors. Its use
both accelerates development and makes development itself
easier. As sample applications, this paper also contains an
overview of three rapid prototypes developed for use in
demonstrations at Maker Faire 2008.
Keywords
Prototyping, Ubiquitous computing, MCU, VM, P2P
INTRODUCTION
The basic technologies for ubiquitous computing are
developing and advancing, and the nature of applications is
changing as a result of this evolution. As wireless
environments spread, users are increasingly able to connect
to networks anywhere and at any time. The connection of
sensor devices to networks and databases will allow a wide
range of real world phenomena to be stored and shared as
data. Within this environment, applications are no longer
limited to conventional input devices like keyboards and
mice or conventional output devices like displays and

external speakers. They can incorporate functions that are
on par with those in real space. In other words, it is possible
to develop real space applications that sense phenomenon
in the real world and, based on the results, actuate events in
the real world.
Among these real space applications, we refer to
applications that are embedded in day-to-day life and
intended for use by consumers as "Ubiquitous Content" [1].
This is content that is experienced through interaction with
people, objects and environments that exist in real space.
While "Tangible Bits" [2] is based on the concept of
"touching information," "Ubiquitous Content" is focusing
on “entertaining experience” in the everyday life activities.
People will be entertained for a very short moment such as
5 seconds when one is interacting with the household goods
or environment. This snack sized entertaining experience in
the daily life opens up a new landscape for smart artifacts
and environment to become a ubiquitous media.
This paper provides an introduction to "xtel," a
development support environment that enables the efficient
creation of these ubiquitous contents. Xtel comprises the
three tools described below, which are incorporated into an
integrated development environment (IDE), such as
Eclipse, to enable ubiquitous content development.
 Moxa: A "Micro Control Unit" (MCU) board that

connects with sensors and actuators and is capable of
short-distance wireless communications.

 Talktic: A programming/runtime environment for the
MCU board that includes a JavaScript parser,
compiler, virtual machine (VM) and library.

 Entity Collaborator: A P2P network library that uses
the SIP protocol to be able to handle continuous
information like video and audio in addition to
discrete information from sensors.

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

The use of these tools enables both developers and
designers to quickly and easily create ubiquitous contents.
By accelerating the speed of development and lowering the
hurdles to development, it will facilitate the participation in
development of creative designers who have not been
involved in the past due to the technical barriers. Giving
engineers and designers the ability to develop
entertainment-oriented ubiquitous content will enrich
everyday life.
RELATED RESEARCHES
This chapter examines research related to the three xtel
tools and highlights problem points.
Sensor Devices
Two of the best-known devices using wireless
communications functions to facilitate the development of
ubiquitous computing applications are "MOTE" [3] and
"SmartIts" [4]. MOTE is a wireless sensor terminal capable
of creating ad hoc multi-hop networks. It uses 2.4 GHz
IEEE 802.15.4 as its wireless standard. It also contains an
operating system known as "TinyOS," and for development
uses "nesC," an extension of the C language. SmartIts is a
sensor network device with a wide variety of sensing
functions. It achieves wireless communications with either
Bluetooth or RFM communication functions. One of the
problems with these devices is that they require the sensor
configuration and layout on the board to be fixed; if the
layout required by developers differs from the layout of the
sensors on the board, developers are forced to create the
sensor environment from the hardware level up.
Conversely, "Phidget" [5] and "Teleo" [6] are leading
examples of devices that can be easily connected to sensors
and actuators by developers themselves but do not have
wireless communications functions. Instead, they create
implementation environments that can be directly
controlled from a computer using USB connections.
Libraries are also provided to enable development in a
range of development environments, including Flash and
Max/MSP. The execution environment, however, is the PC,
which makes this technology difficult to utilize in
applications that are required to be compact and in
distributed applications that use short-distance wireless to
share environmental information and operate
collaboratively.
Development Environment for MCU Boards
"Wiring" [7] and "Arduino" [8] are among the leading
integrated development environments that extend to MCU
boards. Wiring is an integrated development environment
that comprises an i/o board and an open source
development environment (Java). It can be programmed in
the Java-based Proce55ing [9] language. Arduino is an
integrated development environment that comprises an i/o
board and an open source development environment, the
same as Wiring. It uses an original language that it derived
from Wiring and has a C/C++-like syntax. In both cases,
coordination with the MCU board is hidden by the

development environment. Their merits are that they do not
require that hardware or software be designed and
implemented from scratch and they use simple
programming languages that ultimately reduce the barriers
to development. However, there are also some
shortcomings, including the inability to coordinate multiple
MCU boards and lack of object-oriented concepts.
If one focuses on the development environment itself, it is
possible to use a Java virtual machine as the execution
environment in order to achieve a truly object-oriented
environment. Sun SPOT [10] is a wireless sensor network
device that incorporates a Java runtime environment. As a
Java-based programmable device, it can be programmed
using integrated development environments like NetBeans.
It also includes 2.4 GHz IEEE 802.15.4 wireless and a
battery. NanoVM [11] is a VM for the Atmel AVR
ATmega8 CPU rather than for a specific MCU board. It
can be programmed in the Java language using the Sun
JDK. It has also been successfully miniaturized, enabling
Java programs to utilize 75% of the 1 kByte RAM.
A Framework for Ubiquitous Computing
There has been research into frameworks and middleware
to support applications development based on ubiquitous
computing concepts [12], but most of the existing research
focuses on the distribution of sensor information, context
information and other event information, which makes it
difficult to use video or audio. To address these issues,
research has examined the potential of using SIP [13] or
XMPP [14]. SIP is a protocol used for IP telephone
services, video conferencing and Instant Messenger (IM)
services, and its application to information appliances and
mobile telephones has also been studied. XMPP is a XML-
based protocol that is used in, for example, Google Talk. It
is suited for IM-based message exchange and also for
notification of presence information, for example, login
status. While XMPP is a standard currently applied only to
IM, SIP can be effectively used as the backend for
communications infrastructure.
Examples of research into the use of SIP as a framework
include CINEMA [15] and SPLAT [16]. CINEMA is a
software foundation for multimedia collaboration and
comprises multiple SIP servers. The server cluster is made
up of SIP proxies, presence servers and registrars, which
are controlled by "Call Processing Language" (CPL). It is
also possible to develop original applications using the C
and C++ libraries provided. SPLAT is a platform to
coordinate SIP-based multimedia conferencing, games and
other similar services with existing applications. It is
comprised of high-level APIs to provide the SIP functions,
client-side SIP services to drive them and "network
infrastructure blocks" that define original SIP-based
services. Low-level APIs are also provided to enable the
fine-tuning of individual SIP flows. While the APIs are
useful for SIP applications development, client/server
architecture is used in all cases, giving this approach little

of the scalability and ad hoc adaptability that would make it
suitable for home networks or offices. In addition, the APIs
provided are geared for engineers well-versed in SIP,
making it difficult for others to learn them and prototype
applications using them.
XTEL
This chapter examines the three tools that comprise xtel,
outlining their features and structures. These three tools
share the common purpose of making it faster and easier to
build ubiquitous contents.
Moxa
Features
After reviewing the relevant literature, we adopted the
following four features as requirements for the MCU board
we developed. The first two are designed to accelerate the
trial and error cycle for the developer. The second two are
to realize the operations in different spaces that are required
for the advancement of ubiquitous computing research.
1. Simplification of sensor connection and use

Use of sensors requires no knowledge of hardware. It
is possible to obtain sensor information just from
attaching/detaching connectors and providing code
descriptions.

2. General-purpose orientation -- ability to connect to
a wide range of sensors
Use of a common connector standard for a wide range
of sensors to be mounted, thus enabling free
configuration of sensors.

3. Distributed environment
Equipment with short-distance wireless
communications functions to enable communication
of sensor information among devices, achieving a
device mounting volume that is less than that of the
PC.

4. Extended range of spatial application
Achievement of communications between devices and
mobile telephones and between devices and PCs.

Structure
Moxa developed by our project is a computer board that
uses an ATMEL controller as its MCU (see Figures 1 and
2). Near the MCU, 32 Kbyte SRAM and an IC that
incorporates the primary functions are mounted, including a
wireless transceiver that conforms to the 2.4 GHz IEEE
802.15.4 standard (Zigbee lower layers). Wireless
communications are capable of maximum speeds of 100
kbps at a clear sight distance of approximately 100 m, and
it is possible to specify channels.1 Proto01 has an interface
that is useful for development and debugging, consisting of
a JTAG interface, in circuit programming connector,

1 It is possible to mount Xbee [17] on Arduino to achieve

wireless functions, but channels cannot be designated.

RS232C connector and check terminal. It can be connected
to a sensor expansion board that can connect standardized
sensors. Proto02 is a more compact version that eliminates
these interfaces and employs a USB interface. 2 Both
devices can be driven by a 4-10 V battery.

Figure1. Proto01

Figure2. Proto02

Application programs can be written in the C language in
the development environment. Developers can easily make
use of hardware functions with the software library, which
consists of a device control library, wireless
communications library, serial communications library and
resource management library. The software library is
statically linked to application programs written by users.
Nonetheless, development in the C language represents
significant hurdles for designers, so the unit is equipped
with Talktic, which allows use of development languages
based on ECMA Script, a familiar tool in web
development.

2 Note that Proto02 does not provide Features 1 and 2.

Talktic
Features
After reviewing the relevant literature, we adopted the
following four features when designing the platform for
MCU board control.
1. Virtual machine-based execution environment

The adoption of a runtime environment that is driven
by virtual machine-based bytecode eliminates the
dependence on a specific MCU, which was one of the
problems in using MCU boards in the past.

2. Lightweight language-based programming
environment
The system utilizes a lightweight language that
enables object-oriented coding and reduces coding
load. Rather than employ an original language, we
adopted a language that is already in widespread use.

3. Concealment of element technologies by library
Libraries are furnished to abstract and conceal
communications with other devices and the handling
of sensors and actuators.

4. Clearly identified execution constraints
Implementation constraints are clearly documented. It
is possible to implement specific classes or methods
as part of the programming environment.

Structure
The Talktic platform consists of the following
implementation components (Figure 3). Combinations of
implementation components achieve Talktic platform
functions.

Figure3. Structure of the Talktic platform

The Talktic virtual machine is based on the NJS JavaScript
Interpreter. This program furnishes a JavaScript compiler,
assembler, virtual machine, native methods and classes
under an LGPL license [18]. The Talktic virtual machine is
based on NJS JavaScript Interpreter 0.2.5, which has been
modified and revised so that it is suited for an MCU
runtime environment. It is written entirely in the C
language. This Talktic virtual machine provides single-
thread operation, uses garbage collection for dynamic

memory management, and supports floating-point
operations and virtual interrupts.
At the core of the Talktic platform is Talktic Script. Talktic
Script conforms almost fully to ECMA Script Version 3,
which is described in the international standard "Standard
ECMA-262 3rd Edition" [19]. Similar languages include
ActionScript and JavaScript. General features of Talktic
Script as an ECMA script include prototype-based object
orientation, anonymous functions, anonymous objects and
standard control syntax. However, the current language
specification for Talktic Script does not implement scope
chain, closure or native class prototype modification. This
is all primarily dependent on the implementation of the
base NJS JavaScript Interpreter.
There are two aspects of Talktic libraries. The first is that
they serve as the drivers for the basic input/output and
communications functions provided by each MCU board
and provide native API libraries for manipulation through
Talktic Script. More specifically, they contain digital IO
(pinMode, digitalWrite, digitalRead), analog IO
(analogWrite, analogRead, soundWrite), wireless
communications (radioconnect, radioSend,
onRadioReceive, radioClose), serial communications
(serialInit, serialAvailable, serialRead, onSerialReceive,
serialSend) and other similar services. Second, there is an
intermediate library to enable implementation of Talktic
Script's object-oriented design patterns. The native APIs are
simple and can be used without modification, or they can
be wrapped as commonly-used design patterns for
smoother implementation.
Entity Collaborator
Features
After reviewing the relevant literature, we adopted the
following two features in the design of the P2P framework.
1. Integrated use of discrete and continuous

information
"Discrete information" refers to events and context
generated from sensor information as well as text-
based information like IM; "continuous information,"
to IP-based audio telephony, video chat videos and
other streaming information. SIP is used to provide
integrated handling of this information. Learning costs
are reduced by using event-driven APIs, concealing
session management and abstracting methods.

2. Ad hoc adaptation and scalability
These features are achieved with the use of distributed
hash tables (DHT) in node management. DHT is a
technology to create hash tables within a distributed
environment, thereby providing information
distribution and data search functions. Learning is
easy because it only involves management of hash
tables. Among DHT's features is the fact that it is pure
P2P that does not depend on servers, it has a high
degree of scalability and ad hoc adaptability, and it

public class CameraEntity extends AbstractEntity {
public CameraEntity() {

//Addition of keywords, initialization of Web
camera (omitted)

addKeyword("camera");
init();

}
public void receiveMessage(EntityEvent e) {

// Console output of received messages
System.out.println(e.getMessage());

}
public SessionDescription

receiveOffer(EntityEvent e) {
//Obtain SDP from offer source,
//and generate answer SDP (omitted)
SessionDescription sdp

=e.getSessionDescription();
SessionDescription ret = getResponseSDP(sdp);
//Start streaming (omitted)
startStreaming(sdp);
return ret;

}
}

List 1. Example of keyword addition

public class Main {
public static void main(String[] args) throws

Exception {
EntityCollaborator ec =

EntityCollaborator.getInstance();
// Initialization of SIP stuck
ec.initiateSipCore();
// Initialization of Chord and automated discovery
of

// peer
ec.findPeer();
// Addition of entities
ec.addEntity(new CameraEntity());
ec.addEntity(new SearchEntity());

}
}

List 2. Startup of EntityCollaborator

avoids single points of failure, thus being able to
discover objects on the network with a high degree of
probability.

Structure
EntityCollaborator(EC) is a framework with the two
features described in the preceding subsection. Users need
merely to use the libraries provided to develop SIP
applications capable of integrated handling of discrete and
continuous information. For implementation, Java (JDK
5.0) is used.
The EC system is comprised of five modules: 1) "Entity"
that is a component created by users; 2) "EntityContainer"
that is a container for Entity; 3) the "SipCore" that is a
processing module for SIP messages; 4) the "Chord" that is
the module providing DHT functions; and 5)
"EntityCollaborator," which is the system front end. These
modules are explained in more detail below.
The "entity" is the central element in application
development and is defined as an interface. Users can
develop an entity with arbitrary functions by inheriting
from AbstractEntity, which is an abstract class, and entities
can be combined to create an application. The entity
conceals SIP communications and defines abstracted
methods to enable event-driven programming.
Entities delegate processing to SipCore to transmit SIP
messages and receive SIP messages from the outside,
calling event handlers corresponding to entities designated
in the SIP URI. Because of this, their functions are similar
to that of an SIP proxy.
As a DHT-based search method, we developed an approach
whereby arbitrary keywords are attached to an entity and
XML containing meta-information on entities
corresponding to keywords can be used as DHT entries.
The XML used to describe meta-information is "Entity
Information Markup Language" (EIML), which describes
the entity's SIP-URI and parameters and is automatically
generated by the system. Chord is a class that implements
these algorithms. Listing 1 shows sample code.
EntityCollaborator is a class that functions as the system
front end and contains methods for system startup and
entity search. System startup basically consists of
initialization of SipCore, initialization of Chord,
designation of bootstrap node, participation in DHT
network from automated discovery and initialization and
addition of entities, in that order. Listing 2 shows the
system startup code.

Figure3. Image of xtel-based ubiquitous contents

Cordination
Xtel is an integrated development environment comprising
these three tools that creates new, personal-level ubiquitous
content by making it easy to combine information of
virtually any type from virtually any source, including
everything from ordinary home appliances and digital
equipment to the Internet itself (Figure 4). For example, it
is possible to build an application in which the act of
approaching a bookshelf is shared over the network and
linked with a Web service like Amazon to enable the user
to purchase a book directly. It is also possible to quickly
achieve and test a series of actions based on that
information and reflect it in behavior in the physical world,
for example, turning on a reading lamp.
SAMPLE XTEL-BASED UBIQUITOUS CONTENTS
We used xtel to build several real space applications as
demonstrations for Maker Faire 2008 Bay Area[20]. In this
paper, we provide an overview of three ubiquitous contents
implementations: "Fluttering," that extends a lamp; "Lovely
Wife," that extends a photo frame; and "Shoulder
Massager," that extends a massager.
Fluttering is a lamp that changes its brightness depending
upon the value from a 3-axis acceleration sensor embedded
in a wireless controller. The changes in brightness mimic
the flickering of candles. This application uses two moxa
boards. One of the boards embeds 3-axis acceleration,
using wireless to transmit acceleration on the X, Y and Z
axes. The other board receives these values and controls
three high-luminescence LEDs (14 lumens/100 mA).

Lovely Wife is a photo frame that plays the voice of a wife
or significant other when the user approaches. The
envisioned users of the application are people involved in
long-distance romances or stationed in remote locations
without their families. For example, a man returns home
from work. As he approaches a photo frame containing a
photograph of his wife or girlfriend, he hears her voice,
which helps him to dispel the fatigue of the day. This
application uses one moxa board and a PC. The photo
frame has a built-in LED and proximity sensor. Moxa
processes the user proximity information from the sensor
and sends a trigger to the PC when the user is within 5 cm.
The PC uses a Flash application to play back a random
sound based on the trigger information. This specification
uses pre-recorded sound information, but it would also be
possible to use Entity Collaborator and SIP to read audio
data from the wife or girlfriend that exists in a remote
location.

Figure4. Wireless controller (right) and lamp (left)

Figure5. Lovely wife

Shoulder Massager is a system that allows a remote user to
control the operations of a low-frequency massager
attached to another user. This application uses two moxa
boards. User A wears a glove with a built-in pressure
sensor that is connected to the moxa. He massages his own
shoulder etc. At this time, the value from the pressure
sensor is sent to the other moxa via wireless. A low-
frequency pad attached to User B is controlled on the basis
of information received from the moxa.

Figure6. Glove with embedded sensor (right) and low-

frequency pad (left)
The three ubiquitous contents described above are all rapid
prototypes. Designers familiar with the ActionScript
development environment built each of the applications in
about one hour based on ideas from a brainstorming
session. All of them are written in about 50 lines of
JavaScript. The key point at the rapid prototyping stage is
how quickly an application can be built. The first step in
implementation is to build a stage at which interaction with
the user is possible, so as to verify the need to add or
remove functions depending upon the experience to be
provided. The three xtel tools were designed to accelerate
the development cycle and provide extremely powerful
tools for rapid prototyping.
EVALUATION
We held a workshop in Japan for some students and
researchers in order to familiarize them with. In this
workshop, we introduced it about moxa and Talktic with
some sample codes to operate moxa itself, to communicate
between moxa and a PC, and to communicate between
moxa and moxa. We also explained Entity Collaborator
with sample codes on P2P network about how to send a

message, how to add a node, and how to use a camera. At
the end of the workshop, we asked the 26 participants to
answer some questionnaires. Table 1 shows positive and
negative opinions from 19 participants who have
experience to developing applications and table 2 shows
opinions from 7 participants who have no experience.

Table1. Some opinions from expert group
positive opinions negative opinions

Cooperation with the web is
fun!
It’s very easy to use wireless
communication.
This is more user-friendly
than other existing
technologies.
It’s not too complicated for
beginners.
Designer can reflect his/her
thinking because there is no
bar that we have to
overcome.

It is necessary to cooperate
with Flash or a similar
program in the case of
developing graphical
expression. Including this,
we will do a lot of things
on xtel.
I think that the users who
are not familiar with
programming cannot use
it, because it is difficult to
develop visual expression
such as Processing.
Some libraries for Flash
are happy.

Table2. Some opinions from non expert group
positive opinions negative opinions

It is easy to understand the
operation of wireless
communication.
Easiness of programming
makes me happy.
These systems for beginners
are easy to adopt.

I hope more samples
would be prepared.

These opinions indicates us that xtel got a certain amount
of evaluation about the user-friendliness of the
development environment. However, we think to
strengthen cooperation functions with Flash and Processing
in order to realize graphical expression easily. In addition,
we got a lot of opinions that it would be difficult for most
of the non-experts who have no experience to write
programs in JAVA or to develop network applications, to
use Entity Collaborator. We will solve this problem by
offering some classes which can run on Flash or
Processing.
CONCLUSION
This paper describes the "xtel" development environment
for ubiquitous contents. Xtel's objective is both to
accelerate the development of these contents and to lower
the hurdles to development. Xtel comprises three tools with
the features required to achieve their individual purposes.
Moxa provides general utility, simplifying sensor
connections and allowing connection to a wide range of
sensors. Wireless communications functions enable the

specification to achieve wide-area distributed
environments. Talktic adopts ECMAScript, which is very
familiar to designers. Entity Collaborator uses a P2P
network to handle both discrete information and continuous
information, significantly reducing learning costs.
We will continue to improve these three tools in the future
furthering our efforts to simplify the development process
including cooperation with graphics function. First, the
current development environment requires the use of
Eclipse for development in either JavaScript or Java.
However, some strongly feel that Java-based development
still presents high hurdles to designers. In the future, we
look forward to providing function-specific classes that can
be used in Flash, Processing, Max/MSP and others,
concealing the programming portion from designers in
order to attract more users. These classes enable the users
to cooperate with the graphics functions under these
development environments. In addition, we will release
each source code of moxa, talktic and Entity Collaborator
under LGPL licenses on our website [21].
ACKNOWLEDGEMENT
This Project is granted by CREST, JST.
REFERENCES
1. Inakage, Masa, et al. "Designing Ubiquitous Content

for Daily Lifestyle." International Journal of
Cognitive Informatics and Natural Intelligence
(IJCINI) (in print) (2008).

2. Ishii, Hiroshi, and Brygg Ullmer. "Tangible Bits:
Towards Seamless Interfaces between People, Bits
and Atoms." Conference on Human Factors in
Computing Systems Atlanta, Georgia, 1997. 234 - 41.

3. Polastre, Joseph, et al. "The Mote Revolution: Low
Power Wireless Sensor Network Devices."
Proceedings of Hot Chips 16: A Symposium on High
Performance Chips., 2004.

4. Beigl, Michael, and Hans Gellersen. "Smart-Its: An
Embedded Platform for Smart Objects." Smart
Objects Conference (SOC 2003). Grenoble, France,
2003.

5. Greenberg, Saul, and Chester Fitchett. "Phidgets: Easy
Development of Physical Interfaces through Physical
Widgets." Symposium on User Interface Software and

Technology(UIST). Orlando, Florida, 2001. 209 - 18.

6. Making Things. "Teleo". 2000. 30 June 2008.
<http://www.makingthings.com/teleo/>.

7. Barragán, Hernando. "Wiring". 2006. 30 June 2008.
<http://barraganstudio.com/>.

8. Arduino. "Arduino". 2005. 30 June 2008.
<http://www.arduino.cc/>.

9. Reas, Casey, and Benjamin Fry. "Processing". 2001.
30 June 2008. <http://processing.org/>.

10. Simon, Doug, et al. "Java™ on the Bare Metal of
Wireless Sensor Devices: The Squawk Java Virtual
Machine." ACM/Usenix International Conference On
Virtual Execution Environments. Ottawa, Ontario,
Canada, 2006. 78 - 88.

11. Harbaum, Till. "Nanovm". 2005. 30 June 2008.
<http://www.harbaum.org/till/nanovm/index.shtml>.

12. Endres, Christoph, Andreas Butz, and Asa
MacWilliams. "A Survey of Software Infrastructures
and Frameworks for Ubiquitous Computing." Mobile
Information System 1.1 (2005): 41 - 80.

13. J. Rosenberg, et al. "Sip: Session Initiation Protocol".
2002. <http://www.ietf.org/rfc/rfc3261.txt>.

14. Jabber Software Foundation. Extensible Messaging
and Presence Protocol (Xmpp): Core, 2004.

15. Berger, Stefan, et al. "Ubiquitous Computing Using
Sip." International Workshop on Network and
Operating System Support for Digital Audio and
Video. Monterey, CA, USA, 2003. 82 - 89.

16. Singh, Aameek, et al. "Splat: A Unified Sip Services
Platform for Voip Applications: Research Articles."
International Journal of Communication Systems 19.4
(2006): 425 - 44.

17. MaxStream. "Xbee/Xbee-Pro". 30 June 2008.
<ww.digi.com/products/wireless/zigbee-mesh/>.

18. Software, New Generation. "Njs Javascript
Interpreter." 1998. 30 June 2008. <http://www.njs-
javascript.org/>.

19. International, ECMA. "Standard Ecma-262, 3rd
Edition." 1999. 30 June 2008. <http://www.ecma-
international.org/publications/standards/Ecma-
262.htm>.

20. Make. "Maker Faire Bay Area 2008". 2008. 22
October 2008.
<http://makerfaire.com/bayarea/2008/>.

21. Keio CREST. " Xtel: Ubiquitous Content Platform ".
2008. 24 October 2008. < http://xtel.sfc.keio.ac.jp/en/
>.

